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Abstrad-This paper presents a theoretical study of the stresses in an infinite tbK:k-walled tube subjected
to rapid inner-surface heating. Quasi-static. uncoupled. thermoelastoplastic creep analysis based on the
incremental theory of plasticity and the Mises-Mises type of creep theory is formulated for a method of
successive el'lstic solutions. The material of the cylinder is assumed to have temperature dependent
properties and to be characterized by the Ramberg..Qsgood's stress strain relation and Norton's law for
secondary creep.

I. INTRODUCTION
The actual properties of a material at elevated temperature can not be described precisely
without taking into consideration the following phenomena[I]: (1) The temperature dependence
of physical coefficients; (2) the decrease in magnitude of the material yield stress with rising
temperature; (3) time-dependent strain and stress response of the material with regard to
variations of the temperature field. Recently with attention to the phenomena of the first and
second category just referred to. the transient thermal stresses for a hollow sphere£2] and for
an infinite circular solid cylinder[3] of the Ramberg-Osgood type material [4] with temperature
dependent properties have been solved by use of the incremental strain theory of plasticity. At
sufficiently high temperatures creep deformation, just as in time-independent plasticity, takes
place under 'a constant. nonhydrostatic state of stress. The situation becomes exaggerated when
either the temperature or the stress level is raised.

Though the phenomena of the third category ought to be taken into account sufficiently
provided that the physical primary creep could be obtained at the high stress level in short time,
this paper treats the thermoelastoplastic creep deformation during the transient state of
temperature and relaxation of thermal stress at the steady state in the thick-walled tube after a
sudden temperature rise on its inner surface, considering only the statical primary creep with
Norton's law. With the physical coefficients[5] characterizing the mechanical and thermal
behaviour of the carbon steel (0.40 Mn. 0.25 Si. 0.120, the method of successive elastic
solutions [6] is used for the numerical calculation.

2. THEORETICAL ANALYSIS
2. t Fundamental equations for stresses and strains

We consider an infinite thick-walled tube of inner and outer radius a and b. which is initially
stress free. It is subjected to an axially symmetric temperature distribution that varies with
time. We assume that the initial uniform temperature of the cylinder is equal to zero and that
body forces and surface tractions are absent. In the following analysis the problem is treated in
a quasi-static sense. and the inertia terms are neglected.

If the temperature at a generic radius r is T at time t, then the total strain is the sum of an
elastic component of strains. a thermal part, a plastic component, and a creep component.
Then, we have

(1)

where the subscripts i, j denote components of the appropriate tensor and E: =
(l-p)eq!aoTo, •.. • Moreover, we have employed the dimensionless variables i =: 17To where
To denotes any conveniently chosen reference temperature and is taken in this case to be equal
to the constant surface temperature to which the boundary of the thick-walled tube is suddenly
exposed. Therefore, we can derive the fundamental equations for stresses and strains similarly
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as in [3] by substituting E~P + E~c, E~P + E~c and E~P + E~c for E~P, E~P and E~P. The following
stress components for an axisymmetric problem can be expressed similarly as in [3].

(2)

where, u~ =(1- lI)u;JEoaoTo. The coefficient of thermal expansion a, the conductivity K, the
elastic modulus E, the yield stress u., the mass density 'Y, and the specific heat C have each
been defined with two factors as in the previous work[2].

a = aoa*(8), K = KoK*(8), E = EoE*(8), UI = UIOU*(8), 'Y = 'Yo'Y*(8), C = CoC*(8) (3)

where at, E*, K* and uT are defined by

a* = I +ali, K* = 1- K1i, E* = 1- EI 62, uT = 1- u1l8. (4)

The expressions for the strains E~, E' can be obtained in the following forms similarly as in [3].

1- 211 I aE* 1 1 I 2 aE* I I (I -)E*E'=2(1_II) d ap dp+2(1-II)pi pE' ap dp+(1+II)pi E* a*d6 pdp

1-211 IE* 1-211 I I+-- -[(E*P +E*C)-(E'P +E~C)] dp+--J pE*[(E*P + E*C)+(E~P +E~C)]dp2(1- 11) P , , 2(1- 11) P "

- _11_~I pE*E* dp +Bo+~I-lip Z p'

(5)

(6)

where, p =ria. The constants' Bo, B. and E~ can be obtained under the condition that the
thick-walled tube is free from external forces [3].

Bo=(1-211)B.,

BI = 2(1 ~ 11) Rf 1 [2(1- II)~iR

E*( Ia* d8)P dp

+~ 1.R pE*{(E~P + E~C) + (E'P + E'C)} dp

J
R aE* I JR aE* JR E*- E'-dp+~ p2d-dp- -{(E~P+E~C)-(E'P+E~C)}dp],

I ap R 1 ap I p

-: =f~d)(1- v)rE*(f a* di)p dp - rpE*{(-:" +-:"J+(-I' +-I'» dp]

where, R =alb. Expressions for the total strains E~, E' have been derived in terms of the
temperature distribution i, and in terms of the total accumulated plastic strains E~P, E'P and
creep strains E~c. E'c. Then the stresses u~. u1 and u~ can be obtained from eqns (2).

2.2 Temperature distribution
The solution of the heat conduction equation for the thick-walled tube with zero initial
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temperature, where the temperature at the inner surface of the tube is maintained constant at To
for t >0, is shown in {7] to be

i =i.u-(1- 2K,l/I)I12] ,

l/I =1/Io(1-.!!!e.) +11'1/10 f exp (- a,,2s) In(Rall)JoCa,,)Uo(pa,,)
In R ,,_I JoCa,,) - Jo(Ra,,)

(7)

where, 1/10 =1- K 1/2. Provided that In(x) and YoCx) are the Bessel functions of the first and
second kinds of order zero, UoCpa,,) takes the form

UoCpall) =Jf!..pa,,)YoCRa,,)- Yo(pa,,)JoCRa,,)

The a" are positive roots of UoCa,,) =O. The s in eqn (7) is the nondimensional time,

s =(hla~t

(8)

(9)

where h means the factor of the diffusivity h =KlyC, and may be taken as constant[7J. From
eqns (4) and (7), we have

8£* 2iir:o (12K .,,)-112 ,,,.[ 1 ~ 2) In(Ra,,)Jn(an)-;-= ULI - I." • 'I'D -IR+11' "",a"exp(-ans d( )_ d(R ),X
rip P n ,,_I Jo a" Jo a"

(10)

2.3 Total accumulated plastic and creep strains
The total accumulated plastic and creep strains can be obtained by summation of the

increments of plastic and creep strains that occur during small intervals of time, each time
interval corresponding to a particular change in temperature. Let the plastic strain increments
I1E:' and the creep strain increments I1E:(' be produced in the small interval I1s. Then total
strains could be assumed to be

(11)

The time-independent plastic strain increments I1E:' and the time-dependent creep strain
increments I1E:(' in above eqn (11) can be obtained by the use of the constitutive equations
which are independent of each other. This procedure is not correct in phenomelogical sense as
the experiments show that these two components are not really different[8]. However, it leads
to the results available to the actual engineering problems.

"Modified total strains" are now defined[6]

(12)

The creep strain increments I1E:(' in above eqn (12), produced in the small interval I1s, are
obtained independently from eqn (25) presented later. The deviatoric components are

(13)

With nondimensional deviatoric stresses s: (= (1- JI)siIEoaoTo), e:~ is given by Hooke's law

(14)
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and from the Prandtl-Reuss equations

(15)

Hence, from eqns (13) to (15)

If an "equivalent modified total strain", E': is defined as

* [(2 *, *,)]112E"l = '3 eij eij

then

Since, by definition,

From eqns (16) and (18),

(16)

(17)

(18)

(19)

(20)

Equation (20) represents the Prandtl-Reuss equations, with the plastic strain increments
expressed simply in terms of strain. With the equivalent stress Ii*,

(21)

the relation AA =(3/2)' (AE':v'0'*) can be obtained from eqns (15), (19) and (21).
Then, from eqn (18),

(22)

Since Ii* depends on Ai and AE':, Ii* can be expressed as follows using Taylor's expansion,

u* =lij_1 +{(ali*). AE': + (ali~). Ai} + .,.
ad ,,-I a8 ..-1

(23)

where. e.g. lij_1 represents the effective stress prior to the present increment of load, Ii* being
the current value. From eqns (22) and (23) the expression for AE': becomes

E:-~ {(I + 1I)/E*}[Ii*.i-1 +(ali*lai)'i_1 . Ai]
AE': =---=:--2---------

1+ '3 {{I + 11)1E*}{ali*1aE:)'i-1

where higher order terms in AE: and Ai are neglected.

(24)
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The creep strain increments can be presented as follows with the Mises-Mises type theory
of creep,

(25)

where AE~ is the equivalent creep strain increment defined

Neglecting the physical primary creep, the creep phenomena is presented by the following
Norton's law[Sj.

AE~ =A*U*" . As, A* =.!. Eo. A"_1(0'10)" •(a2
)

A 0'10 0'" h
(26)

where A is constant with the dimension of time, 0'" and n are temperature-dependent material
constants, and moreover, A is called the loading parameter defined A=EoaoToI(l- V)O'IO as in
[2 and 3J.

2.4 Procedure of numerical calculation
To obtain the plastic strains, the following Ramberg-Osgood type stress-strain relation are

used with the uniaxial stress 0', and strain E/ [4J,

(27)

where e, =EoE,/O'Io. S, =0',/0'10' From the above equation the relation between the equivalent
stress and the plastic strain are as follows.

Therefore, the following term in the right hand side of eqn (24) becomes

[ _* (iJii*) -] _* [ Ai {(E*)' (O'T)'}]O'.i-I + iJi .i-I' A8 =0'.1-1 I+-;; E* +(m -I) O'T ,i-I

(28)

(29)

where ( )' means iJ/iJ8. Equation (29) shows the variation of ii* with temperature.
In the numerical calculations, the thick-walled tube is divided into 80 radial1ncrements. The

period during which the thermal load is applied is divided into SO time increments. The
computation of the plastic and creep strain increments that occur during a particular time
increment (As) is carried out following an iterative procedure.

Computation begins with determination of the temperature distribution at time (s +As) with
eqns (7) and (8). An iterative procedure is used to determine the total strains at each radial
station. From eqns (5), (6) and (10), a first approximation to the total strains is obtained by
setting the plastic strain increments to zero and the total accumulated plastic and creep strains
to the values of these up to the end of the (i -1)th interval at time s, i.e. E:',i-I and E:c,i_I. On
that occasion, the values of E' on the right hand side of eqns (5) and (6) should be set at first to
the values of these at time s. The new estimated values of E' are then used to obtain a better
approximation. After convergence, the strain E~ can be computed from the second equation of
(5). The "equivalent modified total strain" E: are obtained from eqns (13) and (17). At each
radial station the values of E~, are compared with (2/3){(l + v)/E*}[ii~i-I +(iJii*/iJi).i_' . Ail
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(see eqn 24). If
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E~, :S~{(1 + II)/E*}[o-~i-I + (00-*/08)'i_1 . ~8],

then that particular radial station is situated in an elastic region, and correspondingly, ~E: is set to
zero. On the other hand, if

E~r >~{(I + v)/E*}[o-~i-I +(00-*/09)'i_1 . ~9],

then the particular radial station is situated in a plastic zone, and the approximate value of the
"equivalent plastic strain increment" ~E: is calculated from eqn (24). First approximations are
then calculated for ~Etp from the modified Prandtl-Reuss relation (20). These values are then
used to obtain a better approximation for the total strains E~ and E'. This process should be
repeated as many times as is necessary to obtain the desired degree of convergence. After
convergence, the stresses O'~, 0" and O'~ can be computed from eqn (2). The accumulated
plastic strains at time (s +~s) are now updated so as to include the plastic strain increments
which have been determined by this iterative procedure. That is,

* * A *Elj.f = Eij.f;'J +~Eij.f. (30)

Then the first approximation for the equivalent creep strain increment ~Eti is computed from
eqn (26) using the equivalent stress a~i obtained from eqn (21). With the stresses O'~.i and a~i,
the first approximation for the creep strain increments ~E ~~ are obtained from eqn (25). Adding
these values ~E~~ to the accumulated creep strains at (i -I)-stage E~~- .. we have the first
approximation for EtJ at i-stage.

*c _ *c + A *c (31)Eij,i - Eij,i-1 ~Eij.i.

Computing the total strains Et.i from eqn (5) and (6), and then stresses O't.i from eqn (2), we can
obtain the new equivalent stress at i-stage a, from eqn (21). The corresponding value of ~E~i

to this a! are obtained from eqn (26). This value of ~E~,i is then used to obtain a better
approximation for the creep strain increments ~ErJ. This process should be repeated as many
times as is necessary to obtain the desired degree of convergence. After convergence, the stresses
O'~, 0" and O'~ can be determined from eqn (2) and the accumulated creep strains are now updated
so as to include the creep strain increments which have been determined by the iterative procedure
described above. Computation then proceeds for the next increment of time. After the steady state
of temperature is reached, the period during which only the creep deformation proceeds is divided
also into 50 time increments (~s). The same iterative procedure mentioned above is used to
determine the total strains at each radial station with the computed values of the creep strain
increments that occur during a particular time increment (~s).

3. RESULTS OF NUMERICAL CALCULATIONS
For the stress-strain curves with m = 50 in eqn (27), which corresponds to those of carbon

steel (OAOMn, 0.25 Si, 0.12C) in [5], we assume the following thermal properties from [5]:

ao = 11.7 x 10-6 K- 1
, Ko = 59.9 W/mk, Eo = 206 x 1()9 N/m2, 0'10 = 235.4 x 1()6 N/m2 (32)

al = 0.0973'\, K I = 0.0307'\, E1 =0.00223,\2,0'11 = 0.0774'\. (33)

Poisson's ratio v is assumed to be unaffected by temperature [2,3] and to be equal to 0.4. Then,
using these numerical values, it is easily shown that ,\ = EoaoTo/O- V)O'IO = ToI58.6. Moreover,
the material properties for creep are also assumed from [5].

A =107 (hr),
n = -0.0267T + 17.15 = -1.565'\8+ 17.15,

O'n = 1~1~Jr = ~li~!ZN/m2
• (34)
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In eqns (32) to (34), the thermal and material properties except the coefficients of thermal
expansion have been obtained by the interpolation of the data given in [S]for the carbon steel,
and the remainder is taken from [I]. Moreover, termal diffusivity is taken h =9(mm2/sec) from
[5]. With the value of reference temperature To =550"C. i.e. A=9.386 and the strain hardening
exponent m =SO, all the results presented in this paper are calculated for the thick-walled tube
with the inner radius a =3(mm) and outer one b = 6(mm), then s = (hla 2)t =t. Special attention
should be paid to eqn (34). in which the material properties for creep are not applicable to the
temperature lower than 400"e. when the creep strains are not produced.

Figure I shows the Ramberg-Osgood's stress strain relation (27) with variation of tem
perature i. With increase of the values of temperature, the yield stress aT remarkably
decreases. The effect of temperature dependence on uT can be recognized more distinctly than
that on the elastic modulus E*.

Figure 2 shows the variation of temperature jj with respect to p for different values of time
s. The numerals in the figure denote the values of elapsed time after rapid heating. The
temperature distributions in the steady state are obtained at short time s =2. The dash-dot line,
Le. jj=o.m indicates the lowest temperature at which the creep strains are produced. Even in
steady state of temperature, the creep deformation can be recognized onIy in the narrow range
from the inner surface to ria =1.18.

rlgUres 3 to 5 show the variation u', u: and u~ with respect to pat s -= 0.01,0.1 and 2, and
the relaxation of these stresses at s ooסס1= under the steady state of temperature. The creep
strains in the transient state of temperature are so small, as shown later in Fig. 7, that the stress
distributions with and without consideration of these creep strains can not be distinguished in
these figures. The radial stress u' which is clearly compressive drops a little at s .ooסס1= The
circumferential and axial stresses u' and u~ are compressive from the inner surface to the
central portion of the tube except the extremely narrow region including that surface where
these stresses become to be tensile with time because of unloading after yielding, similarly as in
[2], and tensile from that portion to the outer surface. The relaxation of both stresses u' and u~

are recognized clearly from ria = I to 1.2. Since no creep strains are produced in the other
range of the tube as mentioned above, the distributions of stresses at s ooסס1= have no
difference from those at the steady state of temperature s = 2 except that range, i.e. from
ria =1 to 1.2.

Figures 6 and 7 show the variation of creep strain €~t' in the transient and the steady state of
temperature, respectively, with respect to s at the inner surface of the tube, i.e. ria = 1. The
creep strains in the transient state are about 1/100 of those in the stress relaxation, and
therefore can be neglected without loss of accuracy in the numerical calculations.

i-a

0.2

O.ll!W
G.Ii

5t O:~
0.6

0.5 0.56lU
0.8

Q.Il188
1.0

0.2735

o 1 2 3
et

F"II- l. Rambera-Qslood's slress strain relation.



298 H. ISHIKAWA and K. HATA

1.0 ,..---------------,

0.5

o
1 1.5

rIa
Fig. 2. Temperature distributions.

2

-0.1

- • - f(L'~TIrn (AT 5-lIlXX»

Fig. 4. Circumferential stress 0':.

-0.1

Fig. 5. Axial stress O'~.

o.~ 0.1
s

Fig. 6. Axial creep strain l~r in a transient state under healing.
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Fig. 7. Axial creep strain E~< in stress relaxation.

4. CONCLUSION
The thermoelastoplastic creep deformation during the transient state of temperature and the

relaxation of thermal stresses at the steady state in the thick-walled tube after a sudden
temperature rise on its inner surface are presented. The material of the tube is assumed to have
temperature dependent properties and to be characterized by the Rarnberg-Osgood's stress
strain relation and Norton's law for secondary creep. An illustrative example of the carbon
steel (0.40 Mn, 0.25 Si, 0.12 C) with the inner radius a =: 3(mm) and the outer one b =: 6(mm)
shows the following conclusions:

(I) After being subjected to rapid heating To =: 5500C at the inner surface of the tube, the
temperature of the body becomes stationary in a short time, i.e. t =: 2(sec). The creep strains
during this period are small and can be neglected in the stress analysis.

(2) After the steady state of temperature, the creep strains becomes larger with time elapsed,
and then the relaxation of stresses can be recognized.

(3) The relaxation of stresses 0" and O'~ are larger than that of O'~, and concentrate in the
vicinity of the inner surface of the tube where the temperature is higher than 4OOOC.

(4) This paper deals with the statical primary creep in a thick-walled tube subjected to a
transient temperature distribution using Norton's law. The consideration of the physical
primary creep seems to lead to larger creep strains during the transient state of temperature, but
this should be discussed later in the other papers.
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